EigenvalueDecomposition {Microsoft.VisualBasic.Math.LinearAlgebra.Matrix} | .NET clr documentation |
Eigenvalues and eigenvectors of a real matrix. If A is symmetric, then A = VDV' where the eigenvalue matrix D is diagonal and the eigenvector matrix V is orthogonal. I.e. A = V.Multiply(D.Multiply(V.Transpose())) and V.Multiply(V.Transpose()) equals the identity matrix. If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The columns of V represent the eigenvectors in the sense that AV = VD, i.e. A.Multiply(V) equals V.Multiply(D). The matrix V may be badly conditioned, or even singular, so the validity of the equation A = VDInverse(V) depends upon V.cond().
# namespace Microsoft.VisualBasic.Math.LinearAlgebra.Matrix
export class EigenvalueDecomposition {
# Return the block diagonal eigenvalue matrix
D: NumericMatrix;
# Return the imaginary parts of the eigenvalues
ImagEigenvalues: double;
# Return the real parts of the eigenvalues
RealEigenvalues: double;
# Return the eigenvector matrix
V: NumericMatrix;
}
D
: NumericMatrixV
: NumericMatrix