SingularValueDecomposition {Microsoft.VisualBasic.Math.LinearAlgebra.Matrix} | .NET clr documentation |
Singular Value Decomposition. For an m-by-n matrix A with m >= n, the singular value decomposition is an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and an n-by-n orthogonal matrix V so that A = USV'. The singular values, sigma[k] = S[k][k], are ordered so that sigma[0] >= sigma[1] >= ... >= sigma[n-1]. The singular value decompostion always exists, so the constructor will never fail. The matrix condition number and the effective numerical rank can be computed from this decomposition.
# namespace Microsoft.VisualBasic.Math.LinearAlgebra.Matrix
export class SingularValueDecomposition {
# Two norm condition number
Condition: double;
# Two norm
Norm2: double;
# Effective numerical matrix rank
Rank: integer;
# Return the diagonal matrix of singular values
S: GeneralMatrix;
# Return the one-dimensional array of singular values
SingularValues: Vector;
# Return the left singular vectors
U: GeneralMatrix;
# Return the right singular vectors
V: GeneralMatrix;
}
S
: GeneralMatrixSingularValues
: VectorU
: GeneralMatrixV
: GeneralMatrix