trainSVMModel {SVM} R Documentation

train SVM model

Description

Usage

trainSVMModel(problem,
    svmType = C_SVC,
    kernelType = RBF,
    degree = 3,
    gamma = 0.5,
    coefficient0 = 0,
    nu = 0.5,
    cacheSize = 40,
    C = 1,
    EPS = 0.001,
    P = 0.1,
    shrinking = TRUE,
    probability = FALSE,
    weights = NULL,
    verbose = FALSE);

Arguments

problem

-

svmType

Type of SVM (default C-SVC). [as SvmType]

kernelType

Type of kernel function (default Polynomial). [as KernelType]

degree

Degree in kernel function (default 3). [as integer]

gamma

Gamma in kernel function (default 1/k). [as double]

coefficient0

Zeroeth coefficient in kernel function (default 0). [as double]

nu

The parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5). [as double]

cacheSize

Cache memory size in MB (default 100). [as integer]

C

The parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1). [as double]

EPS

Tolerance of termination criterion (default 0.001). [as double]

P

The epsilon in loss function of epsilon-SVR (default 0.1). [as double]

shrinking

Whether to use the shrinking heuristics, (default True). [as boolean]

probability

Whether to train an SVC or SVR model for probability estimates, (default False). [as boolean]

Details

Authors

MLkit

Value

this function returns data object in these one of the listed data types: SVMModel, SVMMultipleSet.

clr value class

Examples


[Package SVM version 1.0.0.0 Index]